Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 26 Муниципальное бюджетное учреждение дополнительного образования «Центр детского и юношеского технического творчества»

Проект

STEAM-Lab как модель технологичной образовательной среды для комплексного развития учащихся в рамках ФГОС

Постепенный переход к цифровой экономике обеспечит спрос на профессии, связанные с техникой и высокотехнологичным производством. Специалистам потребуется всесторонняя подготовка и знания из различных образовательных областей естественноматематических наук, инженерии, технологии. Эти дисциплины становятся востребованными в современном мире. Именно поэтому сегодня отмечается рост популярности STEAM-образования - направления, базовой идеей которого является интеграция естественных наук, технологии, моделирования, искусства, математики с применением междисциплинарного и прикладного подходов.

При реализации проекта в долгосрочной перспективе для школьников имеется возможность совершенствования знаний на всем протяжении периода обучения через установление межпредметных связей предметов различных циклов.

Перспективы дальнейшего развития проекта для педагогов:

- постоянное совершенствование всех компонентов образовательной системы учреждения;
- единый подход преподавателей к решению образовательных задач;
- преемственность образования.

Перспективы дальнейшего развития проекта для учеников:

- применение знаний в реальной жизни;
- приобретение опыта проектной деятельности;
- умение работать в команде;
- умение выражать своё мнение с учётом меняющейся творческой обстановки;
- умение воспринимать и применять конструктивную критику;
- развитие интереса к техническим дисциплинам.

Направления реализации проекта:

- Увеличение количества учащихся, занятых техническим творчеством.
- Обеспечение набора всесторонних условий для развития технического творчества школьников в образовательном учреждении. Поддержка одаренных детей.
- Ранняя профессиональная ориентация.

Цель проекта: создание оптимальных условий для развития технических, исследовательских, проектных, информационных компетентностей учащихся через освоение различных внеурочных курсов, направлений дополнительного образования инженерно-технической и естественнонаучной направленностей.

Задачи

- Обеспечить вариативность образовательных практик для обучающихся по технико-технологическому направлению.
- Разработать модель сопровождения технически мотивированных и одарённых детей по образовательной вертикали через дополнительное образование, организацию внеурочной деятельности.
- Разнообразить применение в педагогической практике вариативных форм дополнительного образования, внеурочной деятельности по организации вовлечения детей в инженерное и техническое творчество.
- Популяризировать инженерное творчество в детской и родительской среде.

Изучив интересы школьников и проработав запрос родительской общественности, было решено стержневой основой проекта STEAM-Lab определить направление «Образовательный технопарк» (сопровождение технически мотивированных и одарённых детей).

Образовательный технопарк - это территория формирования и реализации проектных замыслов. Опыт работы детей в исследовательских группах и проектных командах обеспечивает необходимую социализацию, практику предметного взаимодействия, конструктивного решения содержательных проблем.

Целесообразность работы по направлению «Образовательный технопарк» обусловлена общественной потребностью в творчески активных и технически грамотных рабочих и специалистах-инженерах, в возрождении интереса обучающихся к современной технике, в воспитании культуры жизненного и профессионального самоопределения.

Формирование у обучающихся технологической компетентности в условиях образовательного технопарка, в деятельность которого будут вовлечены все участники образовательных отношений - дети и их родители (законные представители), педагоги, социальные партнеры учреждения, позволит эффективно разрешить противоречия между сохраняющимся низким престижем у молодежи инженерно-технических специальностей с одной стороны, и целевыми ориентирами развития системы образования в городе Рыбинске с другой.

Образовательная деятельность в рамках реализации проекта организована в виде трёх зон в зависимости от навыков, опыта и возраста ученика.

Зоны образовательной деятельности образовательного технопарка

№	Название зоны	Уровень достижений ученика	Курсы технопарка
1	Погружение	Начальный	 Занимательная информатика Робототехника (непрограммируемое ЛЕГО) Основы компьютерной графики 3D-рисование
2	Продвижение	Средний	 Робототехника (непрограммируемое ЛЕГО) 3D-рисование Робототехника (программируемое ЛЕГО) Основы компьютерной графики
3	Совершенствован ие	Высокий	3D-моделированиеКомпьютерная графика

В условиях технопарка представляется возможным эффективная реализация следующих особенностей образовательной деятельности:

- соответствие используемых образовательных технологий идеологии ΦΓОС;
 возможность реализации междисциплинарных проектов и исследований;
- соответствие возрастным особенностям и личностным интересам обучающихся; модульный принцип и вариативность образовательной деятельности;
- содержательная, программная, функциональная и методическая совместимость компонентов образовательной деятельности.

В результате реализации проекта в структуре образовательного технопарка определены следующие функциональные линии:

- конструирование;
- моделирование;
- робототехника;

IT-технологии.

Каждая из представленных линий не существует изолировано. Все курсы технопарка взаимосвязаны.

Взаимосвязь функциональных линий и курсов направления «Образовательный технопарк»

((O) bus obtained in Texitoria pro-						
	Функциональные линии технопарка					
Курсы технопарка	констр	модели	робото	IT-		
курсы технопарка	уирова	ровани	техник	техноло		
	ние	e	a	гии		
Робототехника (непрограммируемое ЛЕГО)	+	+	+			
Робототехника (программируемое ЛЕГО)	+	+	+	+		
Занимательная информатика	+	+	+	+		
Основы компьютерной графики (начальный						
уровень)	+	+		+		
Основы компьютерной графики (средний уровень)	+	+		+		
Компьютерная графика (высокий уровень:						
создание и обработка 2D и 3D изображений)	+	+		+		
3D-рисование (использование 3D-ручки для 3D-						
прототипирования)	+	+				
3D-моделирование (использование 3D-принтера						
для 3D-прототипирования)	+	+		+		

Обеспеченность ресурсами зон и функциональных направлений технопарка

	Направления деятельности технопарка			
Название зоны	Конструирование	Моделирование	Робототехника	ІТ-технологии
Погружение	O	O	Ч	O
Продвижение	Ч	O	Ч	Ч
Совершенствование	Ч	Ч	Ч	Ч

о - обеспечено

ч - частичное обеспечение

н - не обеспечено

Срок реализации проекта: 1 год

Этапы реализации проекта

	таны решинации проекта		
No	Этап реализации	Действия по достижению результатов	Срок
Π/Π			
1	Организационно-	- подготовка участников образовательного	январь
	подготовительный этап	процесса к участию в проекте (круглые	2018
	Задача этапа: разработать	столы, семинары, встречи для педагогов,	
	нормативно-методическое	родителей, обучающихся).	
	обеспечение деятельности	- создание нормативно-методической базы	
	проекта	реализации проекта;	

		- разработка структуры управления	
		проектом, инструкций;	
		- анализ и совершенствование материально-	
		технических условий ОУ для организации	
		работы над проектом	
2	Созидательно-преобразующий	- реализация целевых направлений проекта;	февраль
	этап	- обеспечение оптимальной вовлеченности	_
	Задача этапа: создать и	обучающихся, социальных партнеров,	сентябрь
	реализовать в практической	родителей;	2018
	деятельности структуру и	- осуществление промежуточного контроля	
	содержание проекта	хода выполнения проекта	
3	Аналитико-обобщающий этап	- обобщение результатов реализации	сентябрь
	Задача этапа: оценить степень	проекта, подпрограмм, целевых	_
	реализации целей и задач	направлений;	декабрь
	проекта; определить	- анализ участия обучающихся в	2018
	перспективные направления	соревнованиях, смотрах, конкурсах;	
	дальнейшей деятельности	- прогнозирование перспектив дальнейшего	
		развития ОУ, постановка новых задач;	
		- тиражирование продуктивного опыта	
		работы;	
		- презентация ОУ в сообществе	
		образовательных организаций города	
		Рыбинска	
		I .	

Ожидаемые результаты проекта:

- получение нового опыта и освоенность первичных действий в проектной, конструктивно-модельной, поисковой деятельности естественноматематического и технического направления.
- Разработана модель сопровождения технически мотивированных и одарённых детей по образовательной вертикали через дополнительное образование, организацию внеурочной деятельности.
- Расширение спектра применения в педагогической практике вариативных форм дополнительного образования, внеурочной деятельности по организации вовлечения детей в инженерное и техническое творчество.
- Популяризация инженерного творчества в детской и родительской среде через вовлечение в образовательные события.
- Удовлетворенность участников проекта результатами работы (90%).

Ожидаемые эффекты проекта:

Реализация проекта способствует раскрытию творческого потенциала учащихся. Школьники имеют возможность подготовить образовательный проект, реализовав его в окончательном виде для практического применения. Моделирование, проектирование, конструирование — все это осуществимо в рамках одной зоны. Любой проект может быть использован для дальнейших технических исследований и испытаний, как элемент конструктивных решений, а также как продукт программного управления.

Реализация проекта выведет педагогический, ученический коллективы, родительскую общественность на новый уровень деятельности, сотрудничества, позволяющий наиболее полно объединить учебную и внеурочную сферу деятельности детей в условиях учебного сообщества, расширить образовательное пространство

учреждения, способствующее реализации индивидуальных творческих способностей школьников, повысить качество образования.

Критерии и показатели оценки результативности и эффективности проекта.

Эффективность проекта отражается в уровни роста познавательно активных детей с момента его внедрения, заинтересованности педагогов в использовании новых информационных технологий и инновационных ресурсов в образовательном процессе, в количестве школьников, участвующих в проекте, развитии их метапредметных, предметных и личностных результатов.

Критерии и показатели результативности:

- количество учащихся, активно проявляющих себя в процессе образовательной творческой деятельности в динамике роста;
- увеличение доли педагогов, участвующих в реализации проекта;
- налаживание механизмов взаимодействия с потенциальными социальными партнерами.

Предполагаемые продукты:

- описание модели сопровождения технически мотивированных и одарённых детей;
- банк проектных работ учащихся

Области изменений от деятельности проекта:

- увеличение количества обучающихся, охваченных дополнительным образованием, внеурочной деятельностью по технико-технологическому направлению (на 5 %);
- увеличение количества участников соревнований по данному направлению (на 10%).

Кадровое обеспечение проекта:

<u>№</u> п/п	Должность в ОУ	Функционал в проекте		
1	Директор	Руководитель, разработчик проекта		
2	Заместитель директора	Куратор, разработчик проекта		
3	Учитель, педагог дополнительного образования	Участник проекта (организация и проведение занятий, подготовка школьников к участию в проектах и конкурсах), организация и проведение мероприятий		
4	Тьютор	Участник проекта (организация и проведение занятий, подготовка школьников к участию в проектах и конкурсах), организация и проведение мероприятий		
5	Педагог-психолог	Участник проекта (организация психолого- педагогического сопровождения школьников в период реализации проекта в соответствии с их возрастными и индивидуальными особенностями)		
6	Социальный педагог	Участник проекта (организация сопровождения школьников в период реализации проекта, стимулирует укрепление ценностей науки, культуры и образования в их социальной среде, способствует ранней профориентации.		

Материально-техническое обеспечение проекта в СОШ № 26:

№		Наименование	Количество единиц
Π/Π	[Панменование	количество единиц

1	Конструктор для создания 14 роботов, работающих серии «Образование «Конструирование первых роботов»	8
2	Конструктор Lego Mindstorms EVE 3	4
3	ПО «Технопарк на DVD» (сетевой ресурс)	1
4	3D-ручка «MyRiwell»	12
5	Система проецирования (Проектор+ПК учителя)	4
6	Нетбук	5
7	Моноблок	10

Материально-техническое обеспечение проекта в Центре технического творчества:

№ п/п	Наименование	Количество единиц
1	Конструктор лего	10
2	Конструктор Lego Mindstorms EVE 3	1
3	Конструктор Фанкластик	4

Финансовое обеспечение проекта:

№ π/π	Направление	Год	Источники финансирования	Объемы финансирования (тыс.руб.)
1	Оборудование площадок, приобретение учебных пособий	2017	Бюджетные и внебюджетные средства	350
2	Приобретение средств обучения	2017-2018	Бюджетные средства	50
3	Стимулирование педагогических работников	2017-2018	Бюджетные и внебюджетные средства	150
4	Организация и проведение мероприятий по распространению опыта	2018	Бюджетные и внебюджетные средства	30

Необходимое дополнительное материально-техническое обеспечение проекта:

№ π/π	Наименование	Количество единиц	Примерная цена, руб	Назначение	Примерная стоимость, руб
1	Ноутбук	12	28000	Работа с программами компьтерной графики	336000
2	Ноутбук	1	43000	Стабильное функционирование 3D принтера	43000
3	Конструктор для создания 14 роботов, работающих серии «Образование	8	1400	Увеличение количества школьников, занимающихся конструированием и робототехникой	11200

	«Конструирован				
	ие первых				
	роботов»				
4	Пластиковый	8	250	Транспортировка	2000
4	контейнер	o	230	конструкторов	2000
	Дополнительное			Увеличение	
5	r '	6		возможностей	60000
)	оборудование для лего-роботов	U		использования	00000
	лего-росотов			робототехники	
6	Программное	12	9000	Расширение линии	96000
6	обеспечение	12	8000	IT-технологии	90000

Основные риски проекта и пути их минимизации

№ п/п	Основные риски проекта	Пути минимизации рисков
1	Незаинтересованность, инертность	Популяризация проекта,
	педагогов	стимулирование педагогов
2	Невысокий образовательный уровень	Просвещение родителей
	части родителей	
3	Недостаточная активность родителей	Привлечение родителей к
		проведению школьных мероприятий
4	Недостаточность финансирования	Привлечение внебюджетных средств

Распространение результатов проекта, обеспечение его стабильности

Распространение результатов проекта, обеспечение его стабильности		
№ п/п	Предложения	Механизмы реализации
1	Проведение целенаправленной работы всех участников образовательной деятельности	Презентация модели образовательного технопарка.
2	Повышение мотивации школьников на результативное образование, занятие техническим творчеством, участие в проектной деятельности, на получение дополнительных знаний.	Создание ситуации успеха через вовлечение в конкурсные мероприятия. Положительная оценка родительской общественности результатов проекта.
3	Проведение на базе школы семинаров, презентаций, мастер-классов по распространению опыта функционирования школьного технопарка в образовательном учреждении.	Размещение информации в СМИ. Диссеминация опыта организации деятельности образовательного технопарка другим образовательным учреждениям.
4	Расширение направлений деятельности по проекту.	Привлечение педагогов естественно- научной направленности к участию в проекте
5	Расширение сети социальных партнеров.	Поиск новых социальных партнеров, совершенствование механизмов взаимодействия с общественностью

Проект STEAM-Lab имеет большие перспективы развития. Привлечение школьников к исследованиям в области робототехники и моделирования, обмену технической информацией и начальными инженерными знаниями, развитию новых научно-технических идей позволит создать необходимые условия для высокого качества образования, за счет использования в образовательном процессе новых педагогических подходов и применение новых информационных и коммуникационных технологий. Понимание феномена технологии, знание законов техники, позволит выпускнику школы соответствовать запросам времени и найти своё место в современной жизни.